How Farming Giant Seaweed Can Feed Fish And Fix The Climate

Giant kelp can grow up to 60cm a day, given the right conditions. Joe Belanger/shutterstock.com

Danielle Andrew 04 Aug 2017, 21:06

The ConversationThis is an edited extract from Sunlight and Seaweed: An Argument for How to Feed, Power and Clean Up the World by Tim Flannery, published by Text Publishing.


Bren Smith, an ex-industrial trawler man, operates a farm in Long Island Sound, near New Haven, Connecticut. Fish are not the focus of his new enterprise, but rather kelp and high-value shellfish. The seaweed and mussels grow on floating ropes, from which hang baskets filled with scallops and oysters. The technology allows for the production of about 40 tonnes of kelp and a million bivalves per hectare per year.

The kelp draw in so much carbon dioxide that they help de-acidify the water, providing an ideal environment for shell growth. The CO₂ is taken out of the water in much the same way that a land plant takes CO₂ out of the air. But because CO₂ has an acidifying effect on seawater, as the kelp absorb the CO₂ the water becomes less acid. And the kelp itself has some value as a feedstock in agriculture and various industrial purposes.

After starting his farm in 2011, Smith lost 90% of his crop twice – when the region was hit by hurricanes Irene and Sandy – but he persisted, and now runs a profitable business.

His team at 3D Ocean Farming believe so strongly in the environmental and economic benefits of their model that, in order to help others establish similar operations, they have established a not-for-profit called Green Wave. Green Wave’s vision is to create clusters of kelp-and-shellfish farms utilising the entire water column, which are strategically located near seafood transporting or consumption hubs.


Read more: Seaweed could hold the key to cutting methane emissions from cow burps


The general concepts embodied by 3D Ocean Farming have long been practised in China, where over 500 square kilometres of seaweed farms exist in the Yellow Sea. The seaweed farms buffer the ocean’s growing acidity and provide ideal conditions for the cultivation of a variety of shellfish. Despite the huge expansion in aquaculture, and the experiences gained in the United States and China of integrating kelp into sustainable marine farms, this farming methodology is still at an early stage of development.

Yet it seems inevitable that a new generation of ocean farming will build on the experiences gained in these enterprises to develop a method of aquaculture with the potential not only to feed humanity, but to play a large role in solving one of our most dire issues – climate change.

Globally, around 12 million tonnes of seaweed is grown and harvested annually, about three-quarters of which comes from China. The current market value of the global crop is between US$5 billion and US$5.6 billion, of which US$5 billion comes from sale for human consumption. Production, however, is expanding very rapidly.

Seaweeds can grow very fast – at rates more than 30 times those of land-based plants. Because they de-acidify seawater, making it easier for anything with a shell to grow, they are also the key to shellfish production. And by drawing CO₂ out of the ocean waters (thereby allowing the oceans to absorb more CO₂ from the atmosphere) they help fight climate change.

The stupendous potential of seaweed farming as a tool to combat climate change was outlined in 2012 by the University of the South Pacific’s Dr Antoine De Ramon N’Yeurt and his team. Their analysis reveals that if 9% of the ocean were to be covered in seaweed farms, the farmed seaweed could produce 12 gigatonnes per year of biodigested methane which could be burned as a substitute for natural gas. The seaweed growth involved would capture 19 gigatonnes of CO₂. A further 34 gigatonnes per year of CO₂ could be taken from the atmosphere if the methane is burned to generate electricity and the CO₂ generated captured and stored. This, they say:

…could produce sufficient biomethane to replace all of today’s needs in fossil-fuel energy, while removing 53 billion tonnes of CO₂ per year from the atmosphere… This amount of biomass could also increase sustainable fish production to potentially provide 200 kilograms per year, per person, for 10 billion people. Additional benefits are reduction in ocean acidification and increased ocean primary productivity and biodiversity.

Full Article
Comments

If you liked this story, you'll love these

This website uses cookies

This website uses cookies to improve user experience. By continuing to use our website you consent to all cookies in accordance with our cookie policy.