This New Treatment Could Make Pancreatic Cancer A Manageable Disease

Pancreatic cancer has an extremely low five-year survival rate. Shutterstock
Kristy Hamilton 10 Feb 2017, 22:25

The Conversation

Cancer is among the leading causes of death worldwide. There were approximately 14m new cases diagnosed and 8.2m cancer related deaths in 2012. This figure is expected to rise by about 70% over the next two decades.

Pancreatic cancer is the eighth most common cause of cancer-related mortality worldwide, with incidence almost equalling mortality – that is, almost as many die from the disease each year as develop it. There are several types of pancreatic cancer, but more than 90% of cases are pancreatic ductal adenocarcinomas (PDAC). PDAC has one of the lowest five-year survival rates as well as a general resistance to chemotherapeutic approaches. As a result, the treatment of PDAC remains a major challenge in oncology.

There is a common theme in some of the most prolific aggressive cancers, and that is a protein known as S100P. This protein is highly expressed in pancreatic cancer and once this protein is activated it results in signalling changes that tell the cell to grow and divide remarkably quickly. This induces the cells to spread and create new cancerous growths around the body. This makes S100P a great target for developing new drugs to prevent the spread of aggressive cancers – and pancreatic cancer in particular.

Seeking a fix

Scientists at the University of Hertfordshire, in collaboration with Dr Tatjana Crnogorac-Jurcevic of Barts Cancer Institute, Queen Mary University of London, used computational chemistry methods to design new compounds that would in theory prevent S100P from being activated.

image-20170209-8637-1kz0eaz.jpgPhotomicrograph of CT (CAT) scan-guided fine needle aspirate (FNA) cytology of a pancreatic mass showing malignant cells indicating adenocarcinoma. Shutterstock

In a project funded by the charity Worldwide Cancer Research, Dr Stewart Kirton of the University of Hertfordshire designed the structures of new drugs based on Cromolyn, a drug that can be used to prevent allergy-induced asthma. These new compounds were then synthesised by Hertfordshire’s Dr Sharon Rossiter and her team of chemists.

Full Article

If you liked this story, you'll love these

This website uses cookies

This website uses cookies to improve user experience. By continuing to use our website you consent to all cookies in accordance with our cookie policy.