Scientists Find Evidence For "Muscle Memory" On A Genetic Level

Your cells 'remember'. vitsudio/Shutterstock

Robin Andrews 01 Feb 2018, 22:52

When we think of the term “muscle memory”, we likely ponder on the ability to repeat specific motions without really thinking about it; through practice, these movements become faster and more efficient. A brand new study, however, has discovered a very different type of muscle memory – one that exists on a genetic level and one that influences growth.

Writing in Scientific Reports, the team – headed by Keele University – announce that periods of skeletal muscle growth are recorded by the genes within the muscle. These “memories” are encapsulated in chemical tags, which attach themselves to the relevant genes and assist in muscle growth in later life, based on their history.

These tags are referred to as “epigenetic modifications”, and before we go any further, it’s worth remembering what this is referring to.

Epigenetics, a strangely nebulous term, roughly means “outside” or “on top of” genetics. Generally speaking, it describes the effect external or environmental changes have on DNA. In this case, this doesn’t mean the DNA is changing or mutating, though – it merely describes alterations to the way the genes express themselves, or behave, so to speak.

As rather beautifully explained by this piece over on The Conversation, epigenetics is about turning genes on or off. It can explain cellular memory, in that a physical experience a cell has gone through can be “remembered”, chemically speaking, and passed on to its progeny.

That’s what these tags are. They’re additions to the genes, telling them whether to be active or inactive. It wasn’t easy to find them, mind you: over 850,000 sites on various collections of human DNA had to be carefully analyzed to spot them.

For the study, eight healthy males were asked to exercise to increase their skeletal muscle mass for several weeks; they were then given the same period of time to stop exercising, before being asked to engage in another identical time period of exercise. As expected, lean muscle mass increased at first, then returned toward a baseline, then further increased toward the end of the experiment.

Their genomes were picked apart by researchers throughout the experiment, and this is how the epigenetic tags were discovered. The tags seemed to be telling these muscle growth genes to remain inactive, which means that more tags equals less growth.

Full Article

If you liked this story, you'll love these

This website uses cookies

This website uses cookies to improve user experience. By continuing to use our website you consent to all cookies in accordance with our cookie policy.