GMOs Lead The Fight Against Zika, Ebola And The Next Unknown Pandemic

Meet Viserion and Drogon: the new ant species named after the Game of Thrones dragons
Danielle Andrew 29 Jul 2016, 12:04

The ConversationThe shadow of the Zika virus hangs over the Rio Olympic Games, with visitors and even high-profile athletes citing worries about Zika as a reason to stay away (even if the risk is probably quite low). The public’s concerns are a striking example of the need to rapidly combat emerging infectious diseases.

In the fight against Zika, public health experts have turned to what may sound like an unlikely ally: genetically modified organisms, or GMOs.

Consumers are used to hearing about GMOs in food crops, but may be unaware of the vital role GMOs play in medicine. Most modern biomedical advances, especially the vaccines used to eradicate disease and protect against pandemics such as Zika, Ebola and the flu, rely on the same molecular biology tools that are used to create genetically modified organisms. To protect the public, scientists have embraced GMO technology to quickly study new health threats, manufacture enough protective vaccines, and monitor and even predict new outbreaks.

Vaccines, Meet Molecular Biology

Vaccines work with the immune system to strengthen the body’s own natural defenses. A vaccine offers a preview of a potential infection, so the immune system is ready to pounce if the real threat shows up.

The earliest vaccines were primitive – think Edward Jenner in the 1790s inoculating against smallpox by rubbing together the open wounds of uninfected patients and those with cowpox. But over the years, advances in medical technology led to improved vaccines. The modern age of vaccines was ushered in by the introduction of molecular biology tools in the 1970s, which vastly improved our ability to study and manipulate viruses.

Viruses have spikes for attaching to host cells and a cargo bay to hold its genes (red). Virus illustration via

Under the microscope, viruses look like spiky balls, with an internal cargo bay that houses their genetic material. “Dissecting” a virus means using molecular biology tools to study its genes (whether encoded via DNA or RNA) up close. For example, researchers can “cut and paste” genes to study them in isolation and figure out what they do. Or researchers can cause genetic mutations and watch how an organism responds.

Full Article

If you liked this story, you'll love these

This website uses cookies

This website uses cookies to improve user experience. By continuing to use our website you consent to all cookies in accordance with our cookie policy.