NASA: Saturn Moon Enceladus Is Able To Host Life – It’s Time For A New Mission

Marc Van Norden/Flickr/NASA

Danielle Andrew 19 Apr 2017, 15:42

Ever since studies started suggesting that chemical reactions between water and rock on Saturn’s moon Enceladus could provide enough energy in the water to feed microbial life, scientists have been searching for proof that the right sort of reactions really do occur. The Conversation

And during its last dive through the icy plumes that Enceladus erupts into space in October 2015, the Cassini spacecraft has finally managed to find it – in the form of molecular hydrogen. The finding, published in Science, means the moon can now be considered highly likely to be suitable to host microbial life. In fact, the results should undermine the last strong objection from those who argue it could not.

Enceladus is a small (502km in diameter) moon with an icy surface, a rocky interior and an ocean of liquid water sandwiched between the two. Cassini discovered back in 2005 that Enceladus is venting water into space, in the form of plumes of ice crystals escaping from cracks in the surface. For a decade, Enceladus was the only icy moon where this was known to happen, but plumes have recently been found on Europa, too, a larger icy moon of Jupiter.

Cassini’s discovery led to it being re-tasked to fly through Enceladus’s plumes. There, in addition to water, it was able to identify traces of methane, ammonia, carbon monoxide, carbon dioxide, simple organic molecules and salts.

image-20170411-26751-9b1hsj.jpg

Cutaway view inside Enceladus, showing where hot water and rock interact below the ice. NASA/JPL

Eventually, in March 2015, it detected microscopic particles of silica. By then, the composition of the plumes showed almost every sign that ocean water had reacted chemically with heated rock – altering the minerals of the rocky silicate seabed while the water became rich in chemicals.

Full Article
Comments

If you liked this story, you'll love these

This website uses cookies

This website uses cookies to improve user experience. By continuing to use our website you consent to all cookies in accordance with our cookie policy.