Time Crystals: How Scientists Created A New State Of Matter


Kristy Hamilton 23 Feb 2017, 22:35

The Conversation

Some of the most profound predictions in theoretical physics, such as Einstein’s gravitational waves or Higgs’ boson, have taken decades to prove with experiments. But every now and then, a prediction can become established fact in an astonishingly short time. This is what happened with “time crystals”, a new and strange state of matter that was theorised, disproved, revamped and finally created in just five years since it was first predicted in 2012.

Crystals, such as diamond and quartz, are made of atoms arranged in a repeating pattern in space. In these new crystals, atoms also follow a repeating pattern, but in time. Because of this weird property, time crystals could one day find applications in revolutionary technologies such as quantum computing.

The story of time crystals begins in 2012 with Nobel Prize winner Frank Wilczek from MIT. As a theoretical physicist and a mathematician, Wilczek made a crucial step in transferring a key property of regular crystals – called symmetry breaking – to create the idea of time crystals.

To understand what symmetry breaking is, think of liquid water. In a water droplet, molecules are free to move about and can be anywhere within the liquid. The liquid looks the same in any direction, meaning that it has a high degree of symmetry. If the water freezes to form ice, attractive forces between the molecules force them to rearrange into a crystal, where molecules are spaced at regular intervals. But this regularity means that the crystal isn’t as symmetrical as the liquid, so we say the symmetry of the liquid has been broken when freezing into ice.

Symmetry breaking is one of the most profound concepts in physics. It is behind the formation of crystals, but also appears in many other fundamental processes. For example, the famous Higgs mechanism, which explains how subatomic particles come to acquire mass, is a symmetry breaking process.


Crystals have regular but asymmetrical atomic arrangements. Shutterstock/SmirkDingo

Full Article

If you liked this story, you'll love these

This website uses cookies

This website uses cookies to improve user experience. By continuing to use our website you consent to all cookies in accordance with our cookie policy.